The G protein-biased κ-opioid receptor agonist RB-64 is analgesic with a unique spectrum of activities in vivo.

نویسندگان

  • Kate L White
  • J Elliott Robinson
  • Hu Zhu
  • Jeffrey F DiBerto
  • Prabhakar R Polepally
  • Jordan K Zjawiony
  • David E Nichols
  • C J Malanga
  • Bryan L Roth
چکیده

The hypothesis that functionally selective G protein-coupled receptor (GPCR) agonists may have enhanced therapeutic benefits has revitalized interest for many GPCR targets. In particular, although κ-opioid receptor (KOR) agonists are analgesic with a low risk of dependence and abuse, their use is limited by a propensity to induce sedation, motor incoordination, hallucinations, and dysphoria-like states. Several laboratories have produced a body of work suggesting that G protein-biased KOR agonists might be analgesic with fewer side effects. Although that has been an intriguing hypothesis, suitable KOR-selective and G protein-biased agonists have not been available to test this idea. Here we provide data using a G protein-biased agonist, RB-64 (22-thiocyanatosalvinorin A), which suggests that KOR-mediated G protein signaling induces analgesia and aversion, whereas β-arrestin-2 signaling may be associated with motor incoordination. Additionally, unlike unbiased KOR agonists, the G protein-biased ligand RB-64 does not induce sedation and does not have anhedonia-like actions, suggesting that a mechanism other than G protein signaling mediates these effects. Our findings provide the first evidence for a highly selective and G protein-biased tool compound for which many, but not all, of the negative side effects of KOR agonists can be minimized by creating G protein-biased KOR agonists.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noribogaine is a G-protein biased κ-opioid receptor agonist

Noribogaine is the long-lived human metabolite of the anti-addictive substance ibogaine. Noribogaine efficaciously reaches the brain with concentrations up to 20 μM after acute therapeutic dose of 40 mg/kg ibogaine in animals. Noribogaine displays atypical opioid-like components in vivo, anti-addictive effects and potent modulatory properties of the tolerance to opiates for which the mode of ac...

متن کامل

Ligand-directed trafficking of the δ-opioid receptor in vivo: two paths toward analgesic tolerance.

δ-Opioid receptors are G-protein-coupled receptors that regulate nociceptive and emotional responses. It has been well established that distinct agonists acting at the same G-protein-coupled receptor can engage different signaling or regulatory responses. This concept, known as biased agonism, has important biological and therapeutic implications. Ligand-biased responses are well described in c...

متن کامل

A heterodimer-selective agonist shows in vivo relevance of G protein-coupled receptor dimers.

There has been much speculation regarding the functional relevance of G protein-coupled receptor heterodimers, primarily because demonstrating their existence in vivo has proven to be a considerable challenge. Here we show that the opioid agonist ligand 6'-guanidinonaltrindole (6'-GNTI) has the unique property of selectively activating only opioid receptor heterodimers but not homomers. Importa...

متن کامل

A G Protein-Biased Ligand at the m-Opioid Receptor Is Potently Analgesic with Reduced Gastrointestinal and Respiratory Dysfunction Compared with Morphine s

The concept of ligand bias at G protein-coupled receptors broadens the possibilities for agonist activities and provides the opportunity to develop safer, more selective therapeutics. Morphine pharmacology in b-arrestin-2 knockout mice suggested that a ligand that promotes coupling of the m-opioid receptor (MOR) to G proteins, but not b-arrestins, would result in higher analgesic efficacy, less...

متن کامل

A G protein-biased ligand at the μ-opioid receptor is potently analgesic with reduced gastrointestinal and respiratory dysfunction compared with morphine.

The concept of ligand bias at G protein-coupled receptors broadens the possibilities for agonist activities and provides the opportunity to develop safer, more selective therapeutics. Morphine pharmacology in β-arrestin-2 knockout mice suggested that a ligand that promotes coupling of the μ-opioid receptor (MOR) to G proteins, but not β-arrestins, would result in higher analgesic efficacy, less...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 352 1  شماره 

صفحات  -

تاریخ انتشار 2015